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In solving boundary value problems generally. and boundary value problems of shallow- 
shell theory in particular, it is necessary to have available a set of special solutions of 
the equations of this theory -either it is a fundamental solution or a complete system of 

particular solutions adapted for the considered domain. Precisely because of this circum- 
stance, the overwhelming majority of distinct particular results obtained in recent years 

either refer to spherical or cylindrical shells, i. e. to those shells for which complete sys- 

tems of particular solutions are known (see [l. 21, say). 

The author of [3] obtained general representations of the solutions of the equations of 
shallow shell theory when the coefficients in these equations are analytic functions of 

the coordinates. In the Vekua representations the kernels are defined of solutions of some 
two-dimensional Volterra-type integral equations. If the coefficients in the equations 
of shallowshell theory are assumed constant [4], the analysis is simplified somewhat. 

For this case we can indicate a transformation scheme which would naturally reduce 
the solution to the Vekua type representations (1.2). where their kernels would be defined 

explicitly. 
On the basis of these considerations, various complete systems of solutions as well as 

the fundamental solution of the shallow-shell theory equations are constructed below. 

1. The equations of shallow-shell theory can be represented in the following equiva- 

lent form: 

F = F1 + iFz, F~(z, 5) = u (~7 Y), F,(z, 5) = $- w (z, Y) 

(1.1) 

Here R, R,, h and a are the principal radii of curvature,thickness, and characteristic 
linear dimension of the shell ; E, p are the Young’s modulus and Poisson’s ratio of the 
shell material, respectively ; u, w are the stress function and deflection in the middle 

surface, respectively ; f (2, 5) is the right side in (1.1) which can be understood to be 

a quantity proportional to the loading or a temperature term ; 2 and y are Cartesian 

coordinates on the shell surface. 

It can be shown that the general representation of all regular solutions of (1.1) for 

f (2, 5) = 0 is 

F (z, t) = ‘po (z) ch (5 - Eo) + 4’0 (C) ch (2 - fo> - (1.4 
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Here ‘Pk (2) and qk (5) are arbitrary analytic functions of their arguments 

G,(z-t,r,-T)= 
(1.3) 

Go (z - t, c - z) = Go (5 - z, z - t) = $$A(-f&-Z) 
The functions gk (5) can be represented in different forms. 

a. As recurrent relationships 

gZk+2 (5) = sh5 + (WC -r) {2h’;ktl (r) + g;k(Z))dz (k = 0, 1, . . .) 

0 

g2k+3 (P) = 5 sh (5 - ‘) { 26g;k+2 (‘) + g;k+l (‘) 1 dz 
0 

go (5) = sh 5, g, (5) = 65 sh 5 

(1.4) 

b. As series 

g2k (5) = ia &‘;“l), uk.s, 

min (k, s) 

%,s = (k + 4! zl 

(26)2i 

(k - i)l (s - i)! (2i)U (1.5) 
j=o 

g~k?,l (P) = i. ,zs”“;r;y bk.cr 

min (k, S) 

bk,s=(k+S+1)! 2 

(2)2i+l 

s=o 
(k---I)! (s -I)! (21 + I)1 

c. As the product of exponentials and polynomials 

gk (5) = eSPk(c) + e-rQk(c) 

Here PIA) and Qk (5) are known polynomials of c of degree k. 
The series (1.3) converge absolutely for any finite z and I;. 

If the right side f (2, 5) in (1.1) is nonzero, then a member [3] 
C 

F*(z,E)=\ dtSG,(z-t,E-z)f(t,Z)dZ 
2, t 

appears in (1.2). 

(1.6) 

(1.7) 

By virtue of Eq. (1.1) the kernels Go and Glare the solutions of this equation in argu- 
ments z, c and t, z. Gl is the Biemann function of the given equation. 

The kernels Go (z, %) and G, (z, 5) can be expressed as contour integrals. These 
formulas are of the form 

c+im 

G,(Z, 5) = & 1 ePt’&* (P, 2) dp, Reo> 1 (k=O, i) 

c-ix 

(I.81 

Go* (P, 4 = P 2 GI” (P, z), q=I/pa+6a-i 

2. Let us introduce the functions 

’ a 
Q, (GO = L:, c {‘P(Z)) = cp (4 oh (P - 5,) - \ at Go (z - t, 5 - to) cp (t) dt 

;o 
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a,* (~5) = L;, z{‘p* (C)}-$(E) ch (z-zo)- &Go (z - 2015 - z) ‘p” (z) ax 
co 

z a 
Y (z, 5) = L:, i { 9 (~1) = - s at GI (z - t- t - Co) 4’(t) dt (2.1) 

Here cp (4 0 (4, ‘P* (Q and 9* (5) are arbitrary analytic functions of their 
arguments. 

It follows from (2.1) that the following relationships hold : 

(2.2) 
Each of the functions introduced into (2.1) will be a solution of (1.1) for f (z, c)=O. 

By virtue of (1.2). the general solution of the latter can be represented as 

F (z, 5) = @ (2, 5) + @* (z, 5) + ‘P (z, 5) + ‘P* (z, 5) (2.3) 
let us now construct some complete systems of particular solutions of the homogene- 

ous equation (1.1). Let 

;P(z) = II,(z) = ‘r”,::; 7 ‘p* (5) = ** (5) = f,;$ (2.4) 

where we shall as yet assume that Re y > - 1. 
On the basis of (2.1) we have 

(2.5) 

m* (z - 201 5- 50) = @Y (5 - 50, z - zo) 
y,* (z - zo, 5 - 50) = YY, (5 - 507 z - 20) 

Performing the first two operations in (2.5). and taking account of the formula 

we obtain 

* (z - t)h‘(t - zo)Y s I’(k+l)I’(y+Ift = :(;;c+i) 
20 

C.? 

(2.6) 

ek (5 - 50) (2.7) 

The remaining solutions are defined in (2.5). 
The formulas (2.7) evidently yield an analytic continuation of the solutions onto the 

whole plane of the parameter y with the exception of the points y = - 1, - 2,. . . . 
In this latter case we obtain by taking into account that the Euler Gamma function is 

I?(--) = W) n =n, I,?, (2.8) 
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Y-n (z - 

(-I)_* (2 
(2.9) 

_ zo> 5 - Co) = at-, (5 - 50, z - zo),yn* (2 - 201 c - 50) = 
= y-n (5 - 50, z - 20) 

g-1 (0 5 0 
This last result is completely natural since the operators (2.5) are fractional integrals 

of order.,y ‘of the appropriate kernels, as is easily noted. For Y = n (?z = 1, 2 . ..) we 
have n-tuple integrals, for y = - n (n = 1, 2, . . .) nth order derivatives of the 
kernels. 

We call the functions (3.5) generalized powers since the operators in (2.5) map the 
analytic power functions (2.4) into solutions of (1.1). This definition is also justified 

by the fact that generalized powers of cD,andY ,have a zero of multiplicity n and 
n 1- ' 2 , respectively, at the point z = zo, 5 = co . 

For y = 0 we see that the kernels themselves will be generalized constants 

Q’o (z - zo, 5 - Co) = Do* (z - z,,, 5 - Co) = Go (z - zo, 5 - Co) (2.10) 

Yo (2 - zo, 5 - co) = Y,* (z - z,,, 5 - Co) = G, (2 - 20, g - Co) 

The generalized powers defined above will be regular solutions of (1.1) in any finite 
simply-connected domain D, D* (z E D, 5 E D*). 

3. The functions 

‘L,J,(z - 20, 5 - 50) = 2 m (Z-zo)k ~,(k+l),r,,,~,-1(5-50) 

(3.1) 

k-o 
/$! 

@L, +(z - zo7 5 - 50) = @-n, 6 (5 - 50, z - zo), 

T77, * (z - 20, 5 - 50) = %I, + (5 - 50, z - 20) 

are required below. 

Here c = $ (1) is the Euler constant. The functions (3.1) are analytic in z, 5 in 
any bounded domain D, D”. 

Now, let us construct particular solutions of (1.1). which have a logarithmic type sin- 
gularity or pole of given order at some point. 

To do this let us introduce particular solutions by means of the formulas 

0 (2 - zo, 5 - Co) = L.c’ On (z - ZO)) 

qz - 20, 5 - 50) = LL {In (z - zo)) 
o* (2 - zo, F; - 50) = @ (5 - 50, z - zo) 

E* (z - zo, c - 50) = E (5 - 507 z - zo) (3.2) 
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@-, (z - 20, 5 - 50) =LzQ {(p (zJ>*L (z - zor G - 50) = L’z,c {cp (41 
8 -n+ (2 - 20, 5 - 50) = @-a (5 - 509 2 - zo) 
%I* (2 - 20, 5 - Lo) = %I G - 507 z - d (3.3) 

where 

rpW = ‘-:‘r”” $- I)! Iz # %I, ‘p (2) = 0 (2 = z,) 

Formulas (3. B) define generalized logarithms, and (3.3) yield generalized negative 
powers. Let us evaluate the generalized logarithm E (z - zo, 5 - is). On the basis 

of (1.3) and the binomial formula we have 

O” q$K-L4 li &A(-f,5-Cd=- 2 kl ;r, (-1)“c; (z - z,)“-i (t - z$ 
h-=0 3=Q 

cj, = k! / j! (ii - j)! 
(3.4) 

Substituting (3.4) into the third of formulas (8.1) and integrating by parts, we obtain, 

when taking account of (3.3) 

EI (2 - z,, 5 - CO) = Y. (z - zo, 5 - Co) In [(z - zo) f+l - 
- Y*,i (2 - z,, 5 - L> (3.5) 

by virtue of (2.2) we have 

8 (2 - 2s, 5 - 53 = c;f>, (2 - z,, r; - 5s) In Kz - zO) @I - 

- @)o,iL(z - 207 c - 50) 

The remaining generalized logarithms are defined in (3.2). 

To determine the generalized negative powers @_, (2, 5) we set 

Z (Z -.qn-1 
x(z) =f (n_*)! rp(Q& ~(z)=~(~)(z), X’k’(z!II=~ (k==O,l,. 

GO 

in the first of formulas (3.3). 
Integrating by parts, we arrive at the expression 

8-n (z - 20, 5 - 50) = 

ZZ ~x’“‘(~)g:~.~(5-fo)+(-l,~+~5~G.(~-tr5-5*)~(1)dt 
k-0 20 

Taking account of (3.3). (3.1) and (1.3) we obtain from (3.8) 

(3.6) 

(3.8) 

+ a-T2 (2 -zo, l;-~O)ln[(z-zQ)e-C]-~-,,~(Z-ZO, C-50) fn=l,&...) 

The second power is determined analogously 

E_, (2 - 20, 5 - 50) = ,r, (;;C(:kO,,;)! gn-ir (5 - 50) + (3.10) 

+ ‘I?_,, (2 - za, 5 - PO) In [(z - z,,) eeC] ‘- Y?_n,C~ (2 - zO, 5 - CO) (n =2, 3, . . .) 

E-1 (z - &Jt p - Co) = Yy, (Z - z,, 5 - Go) In [(z - 2,) em”1 - 

- Y-l& (2 - 201 5 - So) 
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The remaining generalized negative powers are defined in (3.3). It follows from (3.9) 
and (3.10) that the order of the principal singularity for the function @-, (2, 5) is n, 
the order of the principal singularity for E_, (z, 5) is n - 2 , for n = 2, 3, . . . ; 
there is only the logarithmic singularity for n = 1, 2 . 

From the theory ofgeneralized functions in the Sobolev-Schwartz sense it follows that 
the function 8_, (E-,) can be defined as the nth power derivative of 8 (%), i.e. that 

the following relationships hold : 

&I (2, 5) = gL 6 (2, 0, &I (2, 5) = -$ E (2, 5) (3.11) 

Particular solutions of (1.1) with a singularity at a point zl, ci different from z,,, &, 
can be obtained analogously. We do not write down these solutions. 

The functions CDn, @‘,, Yy, and Yy,* (n= 0, 1, . . .) form a complete system of 

particular solutions of the homogeneous equation (1.1) for any bounded simply-connec- 
ted domain D, D*. In combination with the functions @_,, 8_,‘, E_,, e_,* they form 
a complete system of particular solutions [3] for any doubly-connected domain D, D*. 

4. From the above it follows that the system of particular solutions mY, my*, Y’, 
and Y,* does not possess symmetry with respect to the subscript. For y = 1, 2, . . . 

we will have a system of particular solutions as a result of successive integration of the 
kernels G,and G,; for y = - 1, - 2, -,... we have solutions which are the result 
of successive differentiation of the same kernels. Meanwhile, both these functions are 

regular solutions of (3 .I). The circumstance mentioned suggests the idea of constructing 
that system of solutions which would be symmetric with respect to the subscript in the 

sense that a sign change in the latter would not go out of the given class of regular solu- 
tions. 

Let us examine the following convolutions: 

c 
A2 

+ s ‘g_!;, 
Ypu(~-z,~,~-&,)d’C (Reh>l, Rey>l) 

co 

The functions defined in (4.1) will be solutions of (1.1) for some f (z, 5). 
Let us elucidate the form of the right side f (z, 5) corresponding to these solutions. 

It is easy to see from (2.1) and (2.5)” that I 

Substituting (4.2) into the second formula in (4.1) we have 
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By virtue of (1.7) we hence conclude that the right side of (1.1) corresponding to the 
solution WA,~ is 

f (Z, 5) = (5 - 5lP (2 - Zcl)y-2 + (t - Co)“-2 (t - z#-’ 
I (A) r (r - 1) I (h - i) r (-0 (4.4) 

The function f (z, 5) corresponding to the solution @A,~ has the form 

f (z, 5) = (I; - COP2 (2 - zo)y-2 
r(h-I) r(r -I) (4.5) 

Integrating in (4. l), and taking account of (2.7) and (1.5) we obtain expressions for 
the functions @Q and %r~,Y 

\r,, y (2 - z;, 5 - I;,) = f (4.6) 

C 2k,2s = akls7 C2k+lr2s = C2k?2s+l = 0, C2k+l,2S+l = bk,o 

Formulas (4.6) yield an analytic continuation of the integrals in (4.1) to complex 
values of the subscripts k and y,with the exception of the points y = - 1, - 2, . . .; 
h = - 1, -2, -, . . . . If one of the subscripts is arbitrary, and the other takes on 
negative integer values, then the functions (4.6) yield solutions of (1.1) with right side 

f (Z, 5) = 0. 
Let y = m, k = - n (m, n = 1, 2L . . .), k ee in in mind (2.8) we then obtain p g 

n z 
@-n, n (z - 20, 5 - 5,) = -f$ s (;,_4);;;’ G, (t - z,, 5 - 5;) dt (4.7) 

20 
Analogous relationships hold also for y_,,,,, (z, t). Symmetry relationships follow 

from (4.1) or (4.6) (4.8) 
a, Y(Z7 5) = ~Y,h(Z, 5) = my, a(59 4, ya,y(Z, 5) = C,h(Z, 5) = ‘r,, a(5, Z) 

If h = - n, y = n (n = 0, 1, 2, . . .), then according to (4.8) we have 

@*_nn (Z, 5) = @L-n, (5, Z), Y”,,, (Z, 5) = %LUI (5, Z) (4.9) 

Therefore, the constructed system of solution with integer subscript r~ a_,,n (Z, G), 

~_n,?C (Z, 5), y_,,n (Z, 5) and ‘Jr_,,, (z, 5) is symmetric in the subscript in the 

above mentioned sense. We call these solutions - solutions of the first kind with integer 

subscript. They can be represented as z 

Cp-,, n (Z - Z,,, 5 - 5,) = 5 5 . . . j G,, (t - zo, 5 - 5,) can (n=O, 1,. . .) 

20 % 

T-n,,(z-z,,,&c,,)=-$-i . ..~Gl(t-zz.,E-5.)dtn-‘+ (4.10) 
20 :I 

G1 (t - zo, 5 - 50) at” (n =I, 2,. . .) 

zo 10 
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yo,o (z - zo, 5 - 5;) = (,$ + A) cl (2 - zo, I; - LJ = $ G (2 - 20, C - 5,) 

6. Let us illustrate how solutions of the first kind with integer subscript “work” by 
means of the example of a cylindrical shell. In this case 6 = i and formulas (1.8) 
become 

Gk (5 5) =&s epr. G*, (P, Z) 4-J 
L 

(5.1) 

Gl*(p, z)=& exp-..f.f- -exp- 
P--l P+l i 

, Go* (~9 4 = P $ G* (P, 4 

(L is a closed contour enclosing the points p = f 1) 

By virtue of (5.1) we have from the first formula in (4.10) (5.2) 

o_,, n (Z1 5) = &- 1 epr ((p -i)n-l exp 3 + (- i)n (P +i)‘-’ exp $} dp 
L 

Let us transform this latter formula into 

a_,, 71 (~~5) = e$ 1 
L 

(D -2i)n-1 exp ((P - 1) 5 + --&) dp + 

+ e-Z_4 s (_l)n (P +;r-l 
2ni L 

exP 
( 

(P + 1) 6 + P&) dP (5.3) 

We hence easilv obtain 

(Rn, n (5 5) = &)“:” Z,(2 I/qch(z+5-qj (n-30,1,...) (5.4) 

We obtain the remaining solution with integer subscript analogously 

@’ -n, n (zv 5) = m-n, ,L (5~ a) = (5; / z)~‘~Z~ (2 1/z;, ch (z + 5 --‘/zinn) 

Y --II, ,z (z, 5) = (z/C)“‘~Z, (2 1/z) sh (z + 5 - l/z inn) 

9 -n, n (zv 5) = y-n, n (5, z) = (5 / z)~“Z~ (2 vz’, sh (z + f - yz inn) 
(5.5) 

where I, (t) is the modified Bessel function of the first kind. 

We have the following expressions for the kernel G, (z, 5) and the Riemann function 

GI (2, 5) Go (z, 5) = Z, (2 vz) ch (z i- 5) (3.6) 
e 

GI (z, 5) = 
s 

Zo (2 1%) ah (2 + b) 014, 2E = z + 5 

9 
The functions (5.4) and (5.5) agree with the known regular solutions in the theory of 

a circular cylindrical shell. 

8. Let us write the fundamental solution of (1.1). To do this, we put 133 in the repre- 
sentations (1.2) the following : 

‘p. (4 = q. (5) = 0, ‘PI (4 = fi In (2 - ~01, $1 (5) = A In (t - to) (6.1) 

It is easy to see from (3.2) and (2.1) that the fundamental solutionis 
8 (z - zo, 5 - 50) = A@ (z - zo, 5 - 50) + g* tz - zo1 5 - 50)) (6.2) 

or bv virtue of (3.5) and (2.10) , .-, . , 

Q(z---zo, ~--50)=2AGl(z-z~, c--_o)ln V(z - io) (5 - 50) 
exp c (6.3) 

- -A vo,, b - zo, 6 - 50) + yo,, (C - 60, z - %)I 
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By virtue of (1.3). (1.5) and (1.1) the function Q (z, 5) has a singularity of type 

o” ln p at the point z = z,,, 5 = &, , where p2 = V(Z - 50)2 + (y - y,)“. Evidently any 

solution regular at the point J = +, 5 = 50 can be added to the function (6.3). 

7. The application of potential theory in shell theory is based on formulas of Darboux 

type (see [3J) which yield a representation of the solution within a domain in terms of 

the fundamental solution and values of the solution and its first three derivatives on the 

domain contour. Later investigations [5] showed the effectiveness of applying potential 

theory in many boundary value problems of shallow shell theory. 

Let us represent the Darboux formula for our case in the following two ways: 
, 

4 F (2, 1/) = cl* \ {N*(S& F) -N*(F, Cl)} ds .4* 
i 

(7.1) 
I, 

!a = D (ii- I, y' - y), F = F (z’, y’), z’, y’ EL, I, y El) 

N’(u, 

b= IFiB” -- 
(1 - aPa 

Here L is the domain boundary, n and s the directions normal and tangent to the 

domain contour, respectively, 6 the angle between the 2 -axis and the external normal, 

D the domain included within L, and A is taken so that A * = 1. 

b) F (2, 5) = + 1 {N (Q, F) $ - N* (a, F) $} ds 
L 

(7.2) 

1 
-- 

4 

sz= a(t-Z,T-Q, F = F (t, a), t, T EL,L*, 2, gtD,D* 

It is convenient to use (‘7.1) to reduce boundary value problems of shell theory to 

integral equations. After some manipulations, (7.2) reduces to a representation of the 

solution of (1.1) in terms of generalized Cauchy type integrals and some others, whose 

kernels are solutions of the type 

tXn (Z, <I, o_,,* (Z, 51, E-, (G 0,s_,* (--, 0, (n z 0.1) 

8. In solving boundary value problems by series, it is conveneient to transform the 

particular solutions written in the form (2.7),(2.9),(3.9).(3.10). etc., into Fourier type 

series in 6. This can be done by using the easily deducible formula 
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In applying the mentioned procedure to the obtained particular solutions the relation- 
ships to which the quantities ak,s and bk,s in (1.5) are subject must be kept in mind 

nr ?+h. (6) = u;% zr, zr+k, b,, r+ k @) = u;2P-1Xw+~, 2rt h-r1 (8.2) 

where 

x 
3 

/! (I + k)! (I + zc)! (r - I)! ’ 
Cil=l--a=_ 

1+s 
1=” 

In conclusion, let us note that the parameter 0 < 6 < 50. If the radii of shell curvature 

areK>O, R,>O, (K,>R), theni,J6,(oc; ifR>0, K1<OandIIZ,I>IRI, 
then 0 < 6 < 1. The values 6 = i and 00 correspond to cylindrical and spherical 

shells. The value 6 = 0 corresponds to a shell of hyperbolic type for I&Z] = lRll (pseu- 
dosphere). 
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OPTIMAL STRATEGIES IN A LINEAR DIFFERENTIAL GAME 
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N. N. KRASOVSKII and A. I. SUBBOTIN 
(Sverdlovsk) 

(Received December 27. 1968) 

The game problem of bringing onto a prescribed set a controlled object whose motion 
is described by linear differential equations is considered. The conditions under which 

a saddle point exists in the class of generalized strategies in the differential game under 

investigation are derived. A procedure for constructing the players’ generalized optimal 
strategies is proposed. 

1, Let us consider the game problem of bringing onto the prescribed set M a control- 
led object whose motion is described by the system of differential equations 

dx 
- = A (t) z + B (t) u 7 C.(t) u _a (1 .I) 


